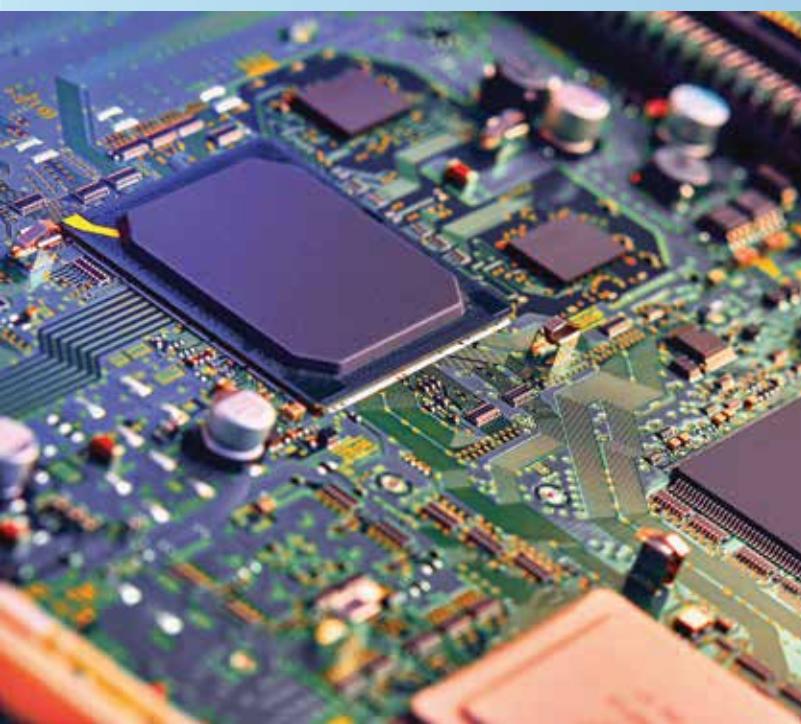


VLSI PHYSICAL DESIGN

We work in collaboration with major
VLSI Companies for placement

 9947273095


 techford_information

Techford information
2nd floor, Portico downtown
Seaport Airport Road, Chitethukara

ABOUT TECHFORD VLSI

Techford VLSI is among the top VLSI training institutes in India. At Techford , we understand the changing demands in the field of VLSI. Our courses are designed to offer students hands-on experience in industry trends. We focus on the overall growth and development of the student. At Techford , our courses are job oriented and our trainers have over 8+ year's industry experience.

Since our inception, we have strived to remain among the best VLSI training institute. We do this through intensive training, affiliation with top-tier semiconductor companies and effective placement programs. Our primary aim at Techford is to connect the student's skill set with industry requirements. We have a very conducive learning environment with modern facilities and tools. Our student's excellent performance in the field has continually ranked us the best VLSI institute in India.

TECHFORD VLSI UNIQUE FEATURES

Expert Trainers

and Curriculum

We collaborate with trainers who have over 8+ year's industry experience. All our courses are professionally designed and are job-oriented to satisfy the demands of the VLSI industry. Our courses are designed and delivered by Professional in The Industry.

Online/Offline Courses & Affordable Fee

Our Online/Offline VLSI courses are designed to ensure that our students gain access to training materials and classrooms at their convenience. We offer state-of-the-art courses at very affordable prices. Our prices are very affordable and competitive with monthly EMI facility.

Powerful EDA Tools

We utilize industrial standard EDA tools for hands-on training of our students. During your period as trainee in our VLSI institute, EDA tools are accessible 24x7 through our vpn service.

100% Placement Support

At Techford VLSI technologies we provide placement support for our students till they get placed. We collaborate with over 200+ top-level semiconductor companies that provide us with placement opportunities for our students.

Physical Design Course Description

Techford VLSI's physical design course is designed to give hands on experience in designing complex chip physical design from RTL to GDSII by utilizing industry standard EDA tools. Course majorly focuses in improving student skill set from the basics and gradually introduce more complex topics with the help of industry standard live projects.

Course material, hand-outs and regular assignments help student to get quick jobs in the semiconductor market. By end of the course you will learn all basics required for interview, physical design flow from floorplanning, power planning, placement, clock tree synthesis and physical verification.

LEARNING OUTCOME

- Get hands-on experience in physical design from RTL to GDSII by executing industry standard live projects.
- Gain deep knowledge in chip design concepts such as floor planning, power planning and building various type of clock trees.
- Acquire skill set in Static Timing Analysis and Synthesis.
- Learn to verify chip design using all physical verification concepts.
- Placement ready with improved soft skills and digital basics.

TOOLS & VPN

Synopsys IC Compiler and PrimeTime with 24x7 VPN access to tools

MODE OF STUDY

Offline, Online – Daily and Weekends

DURATION : 6 Months

TRAINER DETAILS

Trainer has 8+ years of rich experience in physical design domain. He worked on complete RTL to GDSII flow of cutting edge technology nodes 3nm, 7nm, 10nm from block level and top level. His work involves floorplanning, power planning, clock tree synthesis (CTS), DFM, RC extraction, STA and signal integrity (crosstalk) analysis, Formal and physical verification of complex chip sets such as Modem, Memories, PCIe, PHY. He is also managing an ASIC Backed Design team from RTL to tapeout/Signoff including managing tools flows and design issues. He is our expert for giving hands-on tool and theory knowledge to students.

KEY COURSE FEATURES

- 100% placement and tool support till placement is done.
- 24x7 tool access through vpn.
- Affordable fee and EMI facility.
- Industry live projects under the supervision of 15+ experienced trainer.
- Course material, hand-outs, quizzes, assignments to assist in learning.

ELIGIBILITY

B.E/B.Tech in EEE, ECE & EIE pursuing or completed.
M.E/M.Tech/M.S in VLSI/Embedded/Microelectronics

200+ LIST OF PLACEMENT COMPANIES

100% Assured Placement Assistance Till get placed.

Typical placement companies: Capgemini, L&T, HCL, Wipro, Cyient, Samsung, AMD, Synopsys, Tessolve, Micron, Synapse, Cerium, Einfochips, Wafer Space, UST Global, KarMic, Mirafra, Eximius, Sankalp, Insemi, Si2chip, PerfectVIPs, SeviTech, Open Silicon, Atria, Appex, Krisemi, Incise and many more.

COURSE LINK: <https://www.techford.in>

techfordkerala@gmail.com

+91- 9947273095

COURSE CURRICULUM

S.No	Module Name	Sub-Modules
Module 1	Introduction to Electronics, MOSFET & CMOS Theory	Introduction to Electronics and MOSFET Theory
		Introduction to CMOS Process and Circuits
Module 2	Digital Electronics	Binary system and Boolean algebra
		Combinational Circuits
		Sequential circuits - Counters, state machines, shift registers
Module 3	Basics of UNIX/LINUX	Introduction to Unix/Linux Commands
		VI Editor Commands
Module 4	Introduction to ASIC Design	ASIC Flow
		All Stages Discussion
Module 5	Introduction to Verilog	Basic Concepts
		Gate - Level Modeling
		Dataflow Modeling
		Behavioural Modeling
		Tasks and Functions
Module 6	Introduction to DFT	DFT Basics
		Fault Modeling
		Logic and Fault Simulation
		SCAN Design
		Introduction to BIST
Module 7	Synthesis	Inputs and Outputs understanding
		Constraints development and understanding
		Optimization techniques (unify, preserve, flatten)
		Wireload model, PLE, Physical, Spatial
Module 8	Static Timing Analysis Part – 1	Basic understanding of transition/slew, capacitance, leakage power, internal power, On-Chip-Variation (derate, AOCV, LVF)
		Library file difference NLDM, CCS, ECSM, LVF
		Timing concepts understanding such as setup, hold, recovery, removal, pulse width, clock gating check
Module 9	Static Timing Analysis Part – 2	PLL jitter understanding and uncertainty calculations
		IO budgeting
		Different Timing Modes understanding
		Introduction to ECO
Module 10	Physical Design	Input files, Sanity Checks and IO placement
		Floorplanning and Power planning concepts
		Placement strategies like region, fence, blockages, padding, bump, dont touch, filler gap, DRV optimization, Buffer tree synthesis
		Clock tree synthesis and clock latency calculations
		Routing design and optimization, antenna Effect and Latch up issue
		ECO Timing closure and implementation cycle
Module 11	Physical Design Verification	Design Rule Checks understanding and importance
		Layout Versus Schematic and difference with respect to LEC
		Electrical Rule Checks
		IR Drop analysis - Static and Dynamic
Module 12	Industry standard Project Execution	Industry Standard Physical Design Live Project
Module 13	Mock Interviews & Personality Development	